29 research outputs found

    Knowledge, attitudes and practice among high school teachers toward students with mental disorders in Riyadh, Saudi Arabia

    Get PDF
    Background: Mental disorders are highly prevalent among adolescents, and they correlate negatively with students’ achievement, performance, and leadless school engagement and participation. School Teachers can contribute significantly to the early detection and intervention strategies for mental disorders among adolescents. This study estimates high school teachers’ knowledge, attitude, and practice toward mental disorders and determines the association between selected demographic factors.Methods: The ethical committee of King Saud University, Riyadh, Saudi Arabia, approved this cross-sectional study. Multistage random sampling was done, which included 62 male and 48 female high schools in Riyadh between August and December 2021. An Anonymous self-administered questionnaire consisting of 39-item was used for data collection.Results: A total 487 responses were received from the high school teachers, on a scale of 10 maximum score, only (60.4%) showed adequate knowledge regarding mental disorders. Even though, Majority of teachers (76.2%) show a favorable attitude toward mental disorders on a scale of 24 maximum scores. Furthermore, approximately one-third of study participants (34.4%) on a scale of 4 points maximum show good practice toward mental disorders.     Conclusions: This study revealed teachers’ lack of knowledge about mental disorders with poor practice. Even though school teachers have shown favourable attitudes in most aspects toward mental disorders, implantation of the mental health literacy program is recommended to enhance the essential role of school staff in providing the needed support for promoting student mental health

    What killed Frame Lake? A precautionary tale for urban planners

    Get PDF
    Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, little information is available regarding their impact on the lake itself. For this reason, Arcellinida, a group of shelled protozoans known to be reliable bioindicators of land-use change, were used to develop a hydroecological history of the lake. The purpose of this study was to use Arcellinida to: (1) document the contamination history of the lake, particularly related to arsenic (As) associated with aerial deposition from mine roaster stacks; (2) track the progress of water quality deterioration in Frame Lake related to mining, urbanization and other activities; and (3) identify any evidence of natural remediation within the lake. Arcellinida assemblages were assessed at 1-cm intervals through the upper 30 cm of a freeze core obtained from Frame Lake. The assemblages were statistically compared to geochemical and loss-on-ignition results from the core to document the contamination and degradation of conditions in the lake. The chronology of limnological changes recorded in the lake sediments were derived from 210Pb, 14C dating and known stratigraphic events. The progress of urbanization near the lake was tracked using aerial photography. Using Spearman correlations, the five most significant environmental variables impacting Arcellinida distribution were identified as minerogenics, organics, As, iron and mercury (p < 0.05; n = 30). Based on CONISS and ANOSIM analysis, three Arcellinida assemblages are identified. These include the Baseline Limnological Conditions Assemblage (BLCA), ranging from 17–30 cm and deposited in the early Holocene >7,000 years before present; the As Contamination Assemblage (ACA), ranging from 7–16 cm, deposited after ∌1962 when sedimentation began in the lake again following a long hiatus that spanned to the early Holocene; and the Eutrophication Assemblage (EA), ranging from 1–6 cm, comprised of sediments deposited after 1990 following the cessation of As and other metal contaminations. The EA developed in response to nutrient-rich waters entering the lake derived from the urbanization of the lake catchment and a reduction in lake circulation associated with the development at the lake outlet of a major road, later replaced by a causeway with rarely open sluiceways. The eutrophic condition currently charactering the lake—as evidenced by a population explosion of eutrophication indicator taxa Cucurbitella tricuspis—likely led to a massive increase in macrophyte growth and winter fish-kills. This ecological shift ultimately led to a system dominated by Hirudinea (leeches) and cessation of the lake as a recreational area

    Diatom ecological response to deposition of the 833-850 CE White River Ash (east lobe) ashfall in a small subarctic Canadian lake

    Get PDF
    A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117–1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090°N, −114.3719°W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada. Here we analyze changes in diatom assemblages to assess impact of tephra deposition on the aquatic biota of a subarctic lake. In a well-dated core constrained by 8 radiocarbon dates, diatom counts were carried out at 1-mm intervals through an interval spanning  1 cm above and below the tephra layer with each 1 mm sub-sample represented about 2 years of deposition. Non-metric Multidimensional Scaling (NMDS) and Stratigraphically Constrained Incremental Sum of Squares (CONISS) analyses were carried out and three distinct diatom assemblages were identified throughout the interval. The lowermost “Pre-WRAe Assemblage (Pre-WRAeA)” was indicative of slightly acidic and eutrophic lacustrine conditions. Winter deposition of the tephra layer drove a subsequent diatom flora shift to the “WRAe Assemblage (WRAeA)” the following spring. The WRAeA contained elevated abundances of taxa associated with oligotrophic, nutrient depleted and slightly more alkaline lake waters. These changes were only apparent in samples within the WRAe containing interval indicating that they were short lived and only sustained for a single year of deposition. Immediately above the WRAe horizon, a third, “Post-WRAe Assemblage (Post-WRAeA)” was observed. This assemblage was initially similar to that of the Pre-WRAeA but gradually became more distinct upwards, likely due to climatic patterns independent of the WRAe event. These results suggest that lacustrine environments are sensitive to perturbations such as deposition of ash fall, but that ecological communities in subarctic systems can also have high resilience and can recover rapidly. If subsampling of the freeze cores was carried out at a more standard resolution (0.5–1 cm) these subtle diatom ecological responses to perturbation associated with the WRAe depositional event would not have been observed. This research illustrates the importance of high-resolution subsampling when studying the environmental impact of geologically “near instantaneous” events such as episodic deposition of ashfalls

    Diatom ecological response to deposition of the 833-850 CE White River Ash (east lobe) ashfall in a small subarctic Canadian lake

    Get PDF
    A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117-1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090◩N, −114.3719◩W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada. Here we analyze changes in diatom assemblages to assess impact of tephra deposition on the aquatic biota of a subarctic lake. In a well-dated core constrained by 8 radiocarbon dates, diatom counts were carried out at 1-mm intervals through an interval spanning 1 cm above and below the tephra layer with each 1 mm sub-sample represented about 2 years of dep

    What killed Frame Lake? A precautionary tale for urban planners

    Get PDF
    Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, li

    The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    An annually laminated succession in Crawford Lake, Ontario, Canada is proposed as the Global boundary Stratotype Section and Point (GSSP) for the Anthropocene as a series/epoch with a base dated at 1950 CE. Varve couplets of organic matter capped by calcite precipitated each summer in alkaline surface waters reflect environmental change at global to local scales. Spheroidal carbonaceous particles and nitrogen isotopes record an increase in fossil fuel combustion in the early 1950s, coinciding with fallout from nuclear and thermonuclear testing—239+240Pu and 14C:12C, the latter more than compensating for the effects of old carbon in this dolomitic basin. Rapid industrial expansion in the North American Great Lakes region led to enhanced leaching of terrigenous elements by acid precipitation during the Great Acceleration, and calcite precipitation was reduced, producing thin calcite laminae around the GSSP that is marked by a sharp decline in elm pollen (Dutch Elm disease). The lack of bioturbation in well-oxygenated bottom waters, supported by the absence of fossil pigments from obligately anaerobic purple sulfur bacteria, is attributed to elevated salinities and high alkalinity below the chemocline. This aerobic depositional environment, unusual in a meromictic lake, inhibits the mobilization of 239Pu, the proposed primary stratigraphic guide for the Anthropocene

    Hydroecology of Amazonian lacustrine Arcellinida (testate amoebae): A case study from Lake Quistococha, Peru

    Get PDF
    Organic rich sediments were obtained from seven core tops taken in Lake Quistococha, near the city of Iquitos in the Peruvian Amazon. Subsamples from 0 to 4 cm depth in each core were analyzed under dissecting light microscopy to carry out the first investigation of Arcellinida (testate lobose amoebae) from a lacustrine environment in this ecologically important region. The fauna was characterized by a low diversity, low abundance community dominated by centropyxids. This fauna is similar to ‘stressed’ assemblages reported from temperate latitudes, except that test concentrations were two orders of magnitude lower than typical in temperate lakes. Principle arcellinidan stressors in Lake Quistococha likely include the low pH 4 conditions in the lake, and a general lack of suitable minerogenic material to construct tests in the organic rich lake substrate. The low pH conditions are the result of runoff and seepage of water high in dissolved organic carbon from the adjacent similarly low pH 4 terrestrial peatland. The dearth of minerogenic material is the result of the lake being isolated from riverine input for the past ∌2000 years, even during flooding events. Other limiting factors contributing to depressed arcellinidan populations may include nutrient supply, predation pressure, competition, and post-mortem taphonomic factors

    Intra-lake response of Arcellinida (testate lobose amoebae) to gold mining-derived arsenic contamination in northern Canada: Implications for environmental monitoring

    No full text
    Arcellinida (testate lobose amoebae) were examined from 40 near-surface sediment samples (top 0.5 cm) from two lakes impacted by arsenic (As) contamination associated with legacy gold mining in subarctic Canada. The objectives of the study are two folds: quantify the response of Arcellinida to intra-lake variability of As and other physicochemical controls, and evaluate whether the impact of As contamination derived from two former gold mines, Giant Mine (1938–2004) and Tundra Mine (1964–1968 and 1983–1986), on the Arcellinida distribution in both lakes is comparable or different. Cluster analysis and nonmetric multidimensional scaling (NMDS) were used to identify Arcellinida assemblages in both lakes, and redundancy analysis (RDA) was used to quantify the relationship between the assemblages, As, and other geochemical and sedimentological parameters. Cluster analysis and NMDS revealed four distinct arcellinidan assemblages in Frame Lake (assemblages 1–4) and two in Hambone Lake (assemblages 5 and 6): (1) Extreme As Contamination (EAC) Assemblage; (2) High calcium (HC) Assemblage; (3) Moderate As Contamination (MAC) assemblages; (4) High Nutrients (HN) Assemblage; (5) High Diversity (HD) Assemblage; and (6) Centropyxis aculeata (CA) Assemblage. RDA analysis showed that the faunal structure of the Frame Lake assemblages was controlled by five variables that explained 43.2% of the total faunal variance, with As (15.8%), Olsen phosphorous (Olsen-P; 10.5%), and Ca (9.5%) being the most statistically significant (p < 0.004). Stress-tolerant arcellinidan taxa were associated with elevated As concentrations (e.g., EAC and MAC; As concentrations range = 145.1–1336.6 mg kg−1; n = 11 samples), while stress-sensitive taxa thrived in relatively healthier assemblages found in substrates with lower As concentrations and higher concentrations of nutrients, such as Olsen-P and Ca (e.g., HC and HM; As concentrations range = 151.1–492.3 mg kg−1; n = 14 samples). In contrast, the impact of As on the arcellinidan distribution was not statistically significant in Hambone Lake (7.6%; p-value = 0.152), where the proportion of silt (24.4%; p-value = 0.005) and loss-on-ignition-determined minerogenic content (18.5%; p-value = 0.021) explained a higher proportion of the total faunal variance (58.4%). However, a notable decrease in arcellinidan species richness and abundance and increase in the proportions of stress-tolerant fauna near Hambone Lake’s outlet (e.g., CA samples) is consistent with a spatial gradient of higher sedimentary As concentration near the outlet, and suggests a lasting, albeit weak, As influence on Arcellinida distribution in the lake. We interpret differences in the influence of sedimentary As concentration on Arcellinida to differences in the predominant As mineralogy in each lake, which is in turn influenced by differences in ore-processing at the former Giant (roasting) and Tundra mines (free-milling)

    Annual-scale assessment of mid-20th century anthropogenic impacts on the algal ecology of Crawford Lake, Ontario, Canada

    No full text
    Meromictic Crawford Lake, located in SW Ontario, Canada is characterized by varved sediments, making it suitable for high-resolution paleoecological studies. Freeze cores, the only coring method available that reliably preserves the fragile laminations representative of seasonal deposition in the lake, were used to document siliceous diatom and chrysophyte community structure at an annual resolution from 1930–1990CE. Stratigraphically constrained cluster analysis identified major assemblage changes that are believed to have been caused by local, regional and possibly global anthropogenic impacts. The assemblage changes within the siliceous algae are attributed to regional weather and increased industrial emissions and related effects of acid deposition on the lake’s catchment associated with the Great Acceleration –the massive economic, industrial, and demographic expansion beginning in the mid-20th century. Observed increases in spheroidal carbonaceous particles (SCPs) in varved lake sediment dating to the early 1950s record rapidly expanding steel production without emission controls around 30 km upwind of the lake. The findings reported here reflect major changes in earth systems that the Anthropocene Working Group recommends for a proposed epoch to be termed the Anthropocene, providing support for the laminated sediments from Crawford Lake as a potential Global boundary Stratotype Section and Point (GSSP)
    corecore